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ABSTRACT: The damage evolution of fiber-reinforced
polypropylene-matrix composites with matrix defects was
studied via a Monte Carlo technique combined with a finite
element method. A finite element model was constructed to
predict the effects of various matrix defect shapes on the
stress distributions. The results indicated that a small ma-
trix defect had almost no effect on fiber stress distributions
other than interfacial shear stress distributions. Then, a fi-
nite element model with a statistical distribution of the fiber
strength was constructed to investigate the influences of the

spatial distribution and the volume fraction of matrix
defects on composite failure. The results showed that it
was accurate to use the shear-lag models and Green’s
function methods to predict the tensile strength of compo-
sites even though the axial stresses in the matrix were
neglected. � 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103:
64–71, 2007
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INTRODUCTION

The damage and failure of a unidirectional fiber com-
posite are a complex event. The fiber with the weakest
defect breaks first. The load carried by the broken fiber
is then transferred to other fibers and even possibly to
the matrix as well. Matrix yielding, interfacial debond-
ing, and interfacial sliding around the fiber break can
inhibit the crack propagating into the matrix. After the
first fiber break occurs, the load carried by the broken
fiber is then redistributed among the remaining intact
fibers and the matrix as determined by the constitutive
response of the fibers, matrix, and interface. Stress
redistribution causing stress concentration can induce
other fibers to fail according to the statistical distribu-
tion of the fiber strength and thus sheds further load to
the intact fibers and the matrix. As increasing load is

applied to the composite, critical damage cluster comes
into being. The greater the number of broken fibers
required to create the requisite critical damage cluster
is, the more reliable the composite is. Before a global
instability that can cause macroscopic failure is initi-
ated, more fibers have to break. When the damage of
the fibers and matrix accumulates to some point, the
composite as a whole will be unable to carry any addi-
tional load, and failure will be inevitable. To handle
the complex damage evolution of composites with many
fibers, the break influence and Green’s function meth-
ods have been developed by a number of workers.1–14

As the broken fiber propagates its crack into the ma-
trix, the matrix will crack, and the load carried by the
cracked matrix will be transferred predominantly onto
the nearby fibers. Because composites are sensitive to
matrix defects, matrix fracture can induce composite
fracture in which fiber and matrix fractures progress
unstably from around a single break. However, most
existing models for stress transfer have neglected the
stress carried by the matrix and the possibility of ma-
trix fracture. To avoid matrix fracture, composites can
be manufactured with specific matrices or specific
fiber/matrix interfaces. However, it is hard to avoid
matrix defects during processing. Therefore, the design
and optimization of fiber-reinforced polymer-matrix
composites require attention to be paid to the detailed
micromechanics of load transfer and damage evolution
around individual fiber breaks and matrices with
defects.
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Employing a Monte Carlo technique combined with
a finite element method, we simulated the damage
evolution of fiber-reinforced polypropylene-matrix
composites with matrix defects. In the absence of a
detailed knowledge of the underlying mechanics at the
micro- and mesoscales,15 damage and failure were rep-
resented with internal damage parameters under the
assumption that there exist some distributed damages
in composites. First, we studied the effects of the shape
and size of a small matrix defect on stress distribu-
tions. Then, we investigated the influences of the spa-
tial distribution and the volume fraction of many ma-
trix defects on the composite strength through a com-
bination of a Monte Carlo technique with a finite
element method, and we performed a statistical analy-
sis to determine the probability that a fiber with intrin-
sic flaw distributions would fail.

It has been proved by experiments that interfacial
defects are the dominant factors for evaluating the
nonlinear behavior and strength of composites.16,17

However, the interfacial quality can be improved by
the coating of reinforcing fibers with a coating layer.
The poor low-speed-impact resistance (i.e., low energy
absorption before major failure) of stiff-fiber-reinforced
composites can be improved by the coating of the rein-
forcing fibers with a very thin elastomeric coating.18 A
coating layer that can form interfacial oxides at high
temperatures increases the interfacial shear stress and
prevents the interface from debonding and the crack
from propagating into the matrix or the fibers. We will
study how the interfacial defects affect the damage
evolution of fiber-reinforced polymer-matrix compo-
sites in the future.

SIMULATION METHODOLOGY

Finite element model

Because of the very complicated nature of composite
materials, finite element modeling is perhaps the best
candidate for investigating the damage evolution of

fiber-reinforced polymer-matrix composites. Finite ele-
ment analysis provides useful insight into the behavior
of a material at the microscopic level. As an example,
we considered the generation of a two-dimensional fi-
nite element mesh for studying the damage evolution
process of fiber-reinforced polypropylene-matrix com-
posites with matrix defects. Figure 1 shows the finite
element model and the mesh, in which eight-node iso-
parametric quadratic elements based on a plane stress
condition were used in the mesh discretizations of ma-
trix and fibers. Fifty fibers were embedded into the fi-
nite element mesh with equal interfiber spacing, and
the volume fraction of the fibers was 30%. The princi-
ple of virtual work was used to determine the stiffness
of the fibers and the matrix. The matrix region between
any two consecutive fibers was filled with matrix
defects. The diameter of the matrix defect was 30, 50,
or 70 mm. We assumed that defects with different
shapes occurred in the matrix. Figure 2 depicts the
square, hexagonal, and circular defects of the matrix in
our model. Matrix defects of other geometrical shapes
can also be modeled, but including them in the model
will bring difficulty to finite element discretization and
not increase the accuracy of the solution significantly.
Although we used only three types of representative
defects for this study, the procedure was general and
independent of the shapes of the defects. When we
investigated the influence of the spatial distribution
and the volume fraction of many matrix defects on
composite failure, the spatial distribution of these
defects was assumed to obey a hexagonal distribution.
The axial length of the model was chosen so that the
stress distribution at the boundary of the model was
not disturbed by the stress redistribution caused by
the introduction of fiber damage. The fiber element
length was discretized into a set of finite elements with
the length less than the characteristic length (Lc). The
stress transfer across the fiber/matrix interface due to
interfacial shear sliding was accomplished via contact
(gap) elements. Because of the very low yield stress of
the matrix and the high strength and stiffness of the
fiber, the stress–strain behavior of the composite is
nearly linear over the entire range of loading. In the
absence of fiber damage, uniaxial loading determines
the overall stress–strain response of the undamaged

Figure 1 Schematic drawing of the finite element model
and the mesh of a multifiber-reinforced polypropylene-ma-
trix composite with matrix defects. [Color figure can be
viewed in the online issue, which is available at www.
interscience.wiley.com.]

Figure 2 Three different shapes of matrix defects: (a) a
square defect, (b) a hexagonal defect, and (c) a circular
defect. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]
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composite. Typically, for a large composite, the stress–
strain behavior will follow that of an undamaged one
up to the failure stress because the effect of localized
fiber damage on the overall composite deformation is
rather small up to the failure. The Von Mises formula-
tion and the isotropic plastic hardening condition were
assumed to describe the plastic behavior of the matrix.
The stress–strain relation of the matrix was constructed
with the so-called J2 flow theory:

_s ¼ Lijkl : _e (1)

Lijkl ¼ lijkl � a
g

E2
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0
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where _s is the stress increment, _e is the strain in-
crement, s0

kl is the deviatoric stress tensor; Lijkl is the
elastoplastic tensor, lijkl is the elasticity tensor, E is
the elastic modulus, n is the Poisson ratio, Ep is the
plastic modulus, s0

ij is the deviatoric stress tensor, Y
is the hardness parameter, and d is the Kronecker
delta. When the matrix is an elastic body, a is 0, and
when the matrix is an elastic–plastic body, a is 1.

If the equivalent stress of a fiber element reaches its
preset tensile strength value based on the Weibull dis-
tribution, the Young’s modulus of the fiber element is
changed to zero. Then, the fiber element is assumed to
lose all its static stresses. If the equivalent stress of a
matrix element reaches its tensile strength value, E of
the matrix element is changed to zero. Then, the matrix
element is also assumed to lose all its static stresses. If
the interfacial shear stress reaches the interfacial shear
strength, it is thought that interfacial debonding
occurs.

Statistical strength distribution of the fibers

A fiber has scattering in its strength because of the ran-
dom distribution and various sizes of flaws or cracks
along the fiber surface or in the fiber. The strength of
a fiber is always evaluated by the Weibull distribu-
tion. Typically, the statistical distribution of the fiber
strength is measured directly by the performance of a
single-fiber tension test on a set of fibers with a com-
mon gauge length (L). It is assumed in this simulation
that the strength of each fiber obeys the Weibull distri-
bution.

The two-parameter Weibull distribution function
[F(s,L)] for a fiber element with some random strength
(sF) is given as follows:19–28

Fðs; LÞ ¼ PFðs � sFÞ ¼ 1� exp � L

L0

s
s0

� �mF
� �

(5)

where s denotes the stress, PF is the cumulative prob-
ability of failure for each fiber element (its value
ranges from 0 to 1, generated by a uniform random
number), s0 is the Weibull scale parameter describing
the strength of a fiber with length L0 in a tension test,
mF is the Weibull shape parameter (the Weibull mod-
ulus) describing the statistical spread in strength, L0 is
the standard gauge length at which the two Weibull
parameters are estimated, and L is the fiber element
length.

In the finite element simulations, each fiber is dis-
cretized into a set of finite elements with length L:15,19

sc ¼ smF

0 tL0
r

� �1=1þmF

; Lc ¼ rsc

t
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1=mF

0

t

 !mF=mFþ1
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where sc is the characteristic fiber strength in a com-
posite, r is the radius of the fiber, and t is the interfa-
cial shear stress.

Deduced from formula (5), the random strength of a
fiber element (sF) is given as follows:

sF ¼ s0 � L0
L
lnð1� PFÞ

� �1=mF

(7)

By the substitution of uniform random numbers in a
range of 0–1 into eq. (5), sF can be obtained. The uni-
form random numbers are generated via a pseudor-
andom number generator. Assigning the obtained
Weibull strengths to each fiber element can randomly
generate the strength of each fiber element. The low-
est strength value generated is always assigned to the
centrally located parts of the elements to ensure that
the failure takes place away from the specimen ends.

rmin method

The computation is carried out under the boundary
condition of a displacement increment at the fiber and
matrix ends that is related to a uniform applied strain,
and the increment width is determined by the rmin

method, which was developed by Yamada et al.29 and
Goda.30,31 The stress increment required to break an
element can be solved from rmin, which is the mini-
mum value of the incremental ratio. In each simula-
tion, the applied displacement is increased step by step
with small enough steps that at most one or two ele-
ments will fail in each step. At the first calculation step
of this simulation, an arbitrary displacement large
enough to damage almost all the elements is given to
the boundaries. Then, the calculated displacements are
changed to the exact displacements by the multiplica-
tion of rmin to the displacement increment for each ele-
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ment. The stresses and loads acting on the elements
are calculated from the computed displacements. In
the ith-stage computation, the stresses of the fiber, ma-
trix, and interfacial element are as follows:30

For the fiber

ðsf Þi ¼ ðsf Þi�1 þ ðDsf Þi (8)

For the matrix

ðsxÞi ¼ ðsxÞi�1 þ ðDsxÞi; ðsyÞi ¼ ðsyÞi�1 þ ðDsyÞi;
ðtxyÞi ¼ ðtxyÞi�1 þ ðDtxyÞi ð9Þ

For the interface

ðtÞi ¼ ðtÞi�1 þ ðDtÞi (10)

where si�1 is the determined stress increment of each
element at the i�1th calculation and Dsi is the ar-
bitrary and tentative stress increment at the ith calcu-
lation.

To allow all element stresses to reach their cor-
responding strengths, the following equations must be
satisfied:30

For the fiber ðsf Þi�1 þ rðDsf Þi ¼ sF (11)

For the matrix

fðsxÞi�1 þ rðDsxÞig2 � fðsxÞi�1 þ rðDsxÞig
� fðsyÞi�1 þ rðDsyÞigþfðsyÞi�1 þ rðDsyÞig2

þ 3fðtxyÞi�1 þ rðDtxyÞig¼s2
M ð12Þ

For the interface

ðtÞi�1 þ rðDtÞi ¼ tI (13)

where sF is the assigned Weibull strength of fibers, sM

is the matrix strength, t1 is the interfacial shear
strength, and r is the ratio equalizing the left side with
the right side. That is, r is an index that judges the
degree of damage, and it is calculated with eqs. (11)–
(13) for each element as follows:30

For the fiber

r ¼ sF � ðsf Þi�1

ðDsf Þi
(14)

For the matrix

r ¼ �bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
(15)

where:

a ¼ fðDsxÞig2 þ fðDsyÞig2 � ðDsxÞiðDsyÞi þ 3fðDtxyÞig2

b ¼ 2fðsxÞi�1ðDsxÞi þ ðsyÞi�1ðDsyÞig � fðsxÞi�1ðDsyÞi
þ ðsyÞi�1ðDsxÞig þ 6ðtxyÞi�1ðDtxyÞi

c ¼ fðsxÞi�1g2 þ fðsyÞi�1g2 � ðsxÞi�1ðsyÞi�1

þ 3fðtxyÞi�1g2 � s2
M

For the matrix

r ¼ tI � ðtÞi�1

ðDtÞi
(16)

Only the element giving the minimum ratio of all the
elements suffers the damage, that is, the fiber break,
the matrix cracking, or the interfacial debonding.
Finally, the exact stresses are given as follows:30

For the fiber

ðsf Þi ¼ ðsf Þi�1 þ rminðDsf Þi (17)

For the matrix

ðsxÞi ¼ ðsxÞi�1 þ rminðDsxÞi;
ðsyÞi ¼ ðsyÞi�1 þ rminðDsyÞi;
ðtxyÞi ¼ ðtxyÞi�1 þ rminðDtxyÞi ð18Þ

For the interface

ðtÞi ¼ ðtÞi�1 þ rminðDtÞi (19)

By the multiplication of rmin with its increment, the
exact strain and displacement can be calculated.

Simulation procedure

The Weibull random numbers with respect to both the
strength and critical damage quantity are independ-
ently assigned to each fiber element, and the spatial
distribution of the matrix defects is assumed to obey a
hexagonal distribution.

Under the boundary condition of displacement in-
crement, an arbitrary displacement is given along the
fiber axis direction at each fiber end.

Then, in the displacement process, whether a fiber
element breaks or not is checked by a comparison of
the Weibull strength value of the fiber with its equiva-
lent stress value. If the Weibull strength value of each
fiber element is less than its equivalent stress value,
and the equivalent stress value of each matrix element
is less than its tensile strength value, the displacement
increment proceeds. Otherwise, the fiber element or
the matrix element is regarded as broken, and the
Young’s modulus of the fiber element or the matrix
element is then changed to zero, and so are the strain–
stress components of this element. The stress is redis-
tributed according to the finite element stress analysis,
and this element is assumed to lose all its static
stresses; that is, the load acting on this element is
released through its nodes along the displacement
direction under the boundary condition of the load in-
crement.

Finally, as the damage accumulates in the compos-
ite, the pseudonodal loads along the fiber axis direc-
tion decrease largely at a certain strain. It is assumed
that when the average of the fiber element stresses in
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the composite decreases below 90% of the maximum
of the average stress before a given applied strain is
achieved, or when there are sufficient failed elements
to cause catastrophic damage propagation in one cycle,
the composite damage criterion is satisfied. The stress
applied just before failure is taken as the strength of
the composite.

EXAMPLES

Table I lists the key data used in the simulation. Inputs
for the model consist of geometrical and material
parameters. Some of the parameters can be obtained
from micromechanical measurements or arguments,
whereas others are empirical and are determined by
the calibration of the model against experimental test
data. Comparing the results obtained from the finite
element simulation of the deformation of a tensile
specimen with the data available from mechanical tests
and making suitable modifications can considerably
improve the accuracy of the data.

A polypropylene-matrix monolayer composite was
used in the simulation. The polypropylene matrix was
considered an elastic–plastic matrix.

RESULTS AND DISCUSSION

Stress distribution around a single matrix defect

The precise stress distribution of a fiber-reinforced
polypropylene-matrix composite with a small matrix

defect (not shown in this article) is complicated by
bending and compatibility requirements in the region
of the stress concentration. There is an obvious gradi-
ent in the axial stress of the nearest neighboring fibers
through the cross section near the matrix defect,
although the stresses at farther neighbors are more
uniform. Figure 3 shows the stress concentration fac-
tors of the fiber elements next to a matrix defect ele-
ment, which are perpendicular to the fiber axis. The di-
ameter of the matrix defect is 50 mm. The average
stress concentration factors (averaged over the fiber
cross section) of the nearest neighbor fibers for the
three shapes of matrix defects are all about 1.005, and
they decrease slowly with increasing applied load.
Figure 4 shows the normalized axial stress on the near-
est neighboring fiber next to the matrix defect as a
function of the distance from the matrix defect ele-
ment. The stress concentration factor decreases a little
and falls below unity before recovering to unity at
larger distances. The reduction of the stress concentra-
tion factor below unity is partially due to bending but
primarily due to the necessity of satisfying the compat-
ibility condition. Therefore, there must be a region
along each neighboring fiber in which the stress and
strain are reduced below the far-field values so that
the net additional displacement induced by the defect
in the far field is zero. The stress recovery of the matrix
is relatively rapid and independent of the shape of the
matrix defect. Near the matrix defect, the stresses of
the nearest neighboring fibers are larger than those in

TABLE I
Material Constants Used in the Simulation

Material E (GPa) n sb (MPa) sy (MPa) r (um) s0 (GPa)

Fiber 395 0.33 2500 (1 mm) 142 2.6 (1 mm)
Polypropylene 1.35 0.36 37.7 32.5

sb, the tensile strength; sy, the yield stress.

Figure 3 Stress concentration factors of the fiber elements
next to a matrix defect element, which are perpendicular
to the fiber axis.

Figure 4 Normalized axial stress on the nearest neighbor-
ing fiber next to a matrix defect.
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the far field, inducing additional displacement and
strain. However, the strain field is uniform across the
fibers far from the defect. Figure 5 shows the interfacial
shear stress on the nearest neighboring fiber next to
the matrix defect as a function of the distance from the
matrix defect element. The introduction of a small
matrix defect in the model induces an obvious change
in the local shear stress around it. For circular and
hexagonal matrix defects, the shear stresses are distrib-
uted quite uniformly within a sliding zone just away
from the matrix defect and then decay smoothly to
zero. For the square matrix defect, the shear stress
shows more rapid variation within the sliding region.

For handling the effect of the size of the matrix
defect on the stress distribution, we have only consid-
ered the circular matrix defect. The diameter of the
matrix defect is 30, 50, or 70 mm. Compared with the
fiber radius of 142 mm, the matrix defect is relatively
small. The contributions of the square matrix defects
with different sizes to the stress concentration on the
nearest neighboring fibers are almost the same. The
tensile load in the fiber-reinforced composite is mainly
carried by the stiff fibers, primarily because of the very
low matrix/fiber stiffness ratio.

From these simulation results, we conclude that
there are almost no influences of the shape and size of
a small matrix defect on the stress distribution of fiber-
reinforced polypropylene-matrix composites, except
for the interfacial shear stress distribution. Therefore,
we can neglect the effects of the shape and small size
of matrix defects on stress redistributions for the dam-
age evolution simulation of fiber-reinforced polypro-
pylene-matrix composites.

Fiber damage evolution with matrix defects

To predict the strengths of a relatively large composite,
hundreds of simulations of failure in composites hav-

ing several hundred fibers are required. The unit cell
models are limited to symmetric clusters of fiber
breaks because of the symmetry of the unit cell, and
the embedded cell models are limited to the mechani-
cal behavior of composites in the cross direction.32 The
axial stresses in the matrix and the radial axial stress
distribution within the fibers are ignored in the shear-
lag modes and Green’s function methods. It is insuffi-
cient to focus fiber damage evolution on a single ma-
trix defect only. Investigating the influence of the spa-
tial distribution of matrix defects on composite failure
must incorporate a Monte Carlo technique. It is not
computationally feasible to simulate very large sam-
ples via the finite element methods to retain the neces-
sary details at the smallest scale around all of the dam-
age sites. Hence, we considered only a relatively small
number of fibers in our simulation.

Simulations were performed on a one-ply unidirec-
tional polypropylene-matrix composite with 50 fibers.
Figure 6 shows the normalized applied stress versus
the strain of polypropylene-matrix composites with
and without matrix defects. The y axis represents the
applied stress of composites with different matrix
defect volume fractions (MDVFs) divided by their own
tensile strength. The stress–strain relationship is linear
up to e ¼ 1.1% for the composites having various
MDVFs. Over the range of e ¼ 1.1–2.6%, the composite
is strain-hardened. After the strain reaches 2.6%, the
composites start to fail. The tensile strain is increased
when the MDVF in the composite increases. The finite
element simulation has predicted the spatial positions
and applied stress levels for the fiber breakpoint. Fig-
ure 7 shows the applied stress of the composites with
and without matrix defects, normalized by their own
tensile strength, as a function of the number of fiber
breakpoints. As successive fibers break at increasing

Figure 5 Interfacial shear stress on the nearest neighbor-
ing fiber next to a matrix defect.

Figure 6 Normalized applied stress versus the strain of
polypropylene-matrix composites with and without matrix
defects.

POLYPROPYLENE-MATRIX COMPOSITES 69



loads, the data show a monotonically increasing tend-
ency for the composites having various MDVFs. The
normalized strengths and positions (not shown) of
the first 40 fiber breakpoints are almost the same for
the composites with different MDVFs, but there are
some differences in the positions of the 40–60 break-
points, which lead to some changes in the normalized
strengths. When the applied stress reaches the com-
posite strength, the more matrix defects there are in
the composite, the fewer fiber breakpoints there are.
Figure 8 shows the number of fiber breakpoints versus
the strain for composites with and without matrix
defects. The first fiber breakpoint occurs at about
e ¼ 1.1% for the composites having various MDVFs.
Over a range of e ¼ 1.1–2.6%, the fibers break one by
one. In some cases, two or more breakpoints occur in
the same fiber. As the extensional strain increases to
about 2.6%, no new fiber breakpoints form. The addi-
tional strain is accommodated by the further opening

of the existing fiber breakpoints or by the fracture
propagating into the matrix. That is, the fiber fracture
reaches saturation.

Figure 9 shows the average composite strength as a
function of MDVF for composites with mF ¼ 10. The
strength of the composite is reduced slowly with an
increase in the MDVF when the MDVF is small. There
is a quick reduction of the strength of the composite
with the increase in the MDVF when the MDVF
reaches 2%. Twenty-five Monte Carlo samples with
different fiber strengths were simulated for fibers with
mF values of 5 and 10, respectively, for composites
with and without matrix defects. mF ¼ 5 indicates that
a composite is relatively uniform, and mF ¼ 10 indi-
cates that the composite is relatively uneven. The
strength distributions for mF ¼ 5 and mF ¼ 10 are
shown in Figure 10, where the strengths are normal-
ized by sc and the data are plotted in the Weibull
form, ln(s/sc) versus ln[�ln(1 � P)] (where P is the
probability). The composites with matrix defects have
lower strengths and broader failure distributions. The
rate of the strength decrease with increasing MDVF is
larger for composites with smaller mF. For instance, the
strength decrease of the composites with MDVF ¼ 0%
and MDVF ¼ 2.5% was about 4% when mF was 10; this
increased to about 5.3% when mF was 5. In Figure 10,
when mF is 5, the failure strength at P ¼ 0.3 {ln[�ln(1
� P)] ¼ �1.03} decreases by 2.3% at MDVF ¼ 2% and
by 4% at MDVF ¼ 2.5%.

CONCLUSIONS

The shape of a small matrix defect has almost no effect
on the stress distribution of fiber-reinforced polypro-
pylene-matrix composites, except for the interfacial
shear stress distribution. The stress concentrations

Figure 7 Normalized applied stress versus the number of
fiber breakpoints.

Figure 8 Number of fiber breakpoints versus the strain.

Figure 9 Average composite strength versus MDVF for
composites with mF ¼ 10.
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resulting from small matrix defects with different sizes
on the nearest neighbor fibers are almost the same.

The damage evolution of fiber-reinforced polypro-
pylene-matrix composites with matrix defects has been
studied via a Monte Carlo technique combined with
the finite element method. With an increase in the
MDVF, the rate of the composite strength decrease is
larger for composites with smaller mF.

The strength decrease of composites with small
MDVFs can be neglected. This means that it is accurate
to use the shear-lag models and Green’s function

methods to predict the tensile strength of composites
even though the axial stresses in the matrix are
neglected.
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Figure 10 Normalized strength distributions plotted in
the Weibull form for composites having various MDVFs:
(a) mF ¼ 5 and (b) mF ¼ 10.
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